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In Sections A-C, we describe the model of TIP and HIV dynamics at 3 linked scales of biological organiza-
tion using the approach introduced in [5]. The single-cell model is adopted from [9], and is described briefly
(Section A). The host-level model is slightly modified from [9], described in Section B. Population scale
parameters and model are discussed in Section C, following an SIR framework modified from [5]. Section D
addresses the issue of evolutionary stability of HIV under treatment, using a method from [9] for host scale,
and similar eigenvalue comparisons for the population scale. Finally, various assumptions and sensitivity
tests that were made are discussed in Sections E and F.
Notation: in this supplement, we use () for grouping, and [] for arguments to a function.

A HIV and TIP in a single cell: the capsid-stealing model

Basic equations and biological interpretation

At the scale of a single cell, we adopt the previously described capsid-stealing model [9] (Fig 1A). We model
a cell with an integrated HIV provirus. Of all virus products, we focus on two: C(t), the amount of fully
formed capsids that do not yet carry genomic mRNA dimers, and G(t), the amount of dimers of genomic
mRNA. The system of equations has the form

dG

dt

= ✓ � kpckGC � ↵G (1)

dC

dt

= ⌘✓ � kpckGC � �C (2)

Initial model parameters are: ✓, the linear production rate of HIV genomes; kpck, packaging e�ciency; ↵ and
�, the exponential rates of genome and capsid loss, respectively; and ⌘, the capsid-to-genome production
ratio.

In reality, maturation of virions is a gradual process (see for review [4]) involving about 2500 Gag-Pol
precursor molecules, of which half form the capsid, and half are left as a filler. In general, such processes are
described by a more complex system of age-structured equations describing concentrations of RNA genomes,
free proteins, and immature capsids. For the aim of our study, we consider a steady state process for which
the existence of time delays between these stages of capsid formation is not essential. Concentrations of
Gag-Pol precursors and capsids are proportional to each other. The term kpckGC in Eqs. 1-2 describes
the limiting step of capsid formation, the initial Gag-Pol to HIV RNA binding. The unit of ”one capsid”
(production rate ⌘✓) corresponds to the equivalent amount of 2500 Gag-Pol. Thus, the model applies after
a unit adjustment.

In a cell infected with HIV provirus and co-infected with m copies of a TIP provirus, TIP genomic mRNA
is also produced, and has concentration GTIP(t). The system of equations then takes the form:

dC

dt

= ⌘✓ � kpck(GHIV +GTIP)C � �C (3)

dGHIV

dt

= ✓ � kpckGHIVC � ↵GHIV (4)

dGTIP

dt

= mP✓ � kpckGTIPC � ↵GTIP (5)

Two new model parameters are: P , the ratio of TIP to HIV genome production rates, and multiplicity of
TIP infection, m, an integer number, m = 1, 2, 3, . . .. Eqs 1-2 can be obtained from Eqs 4-5 as the particular
case with P = 0.

Output: total amounts of HIV and TIP particles produced by an infected cell

In order to connect to HIV and TIP dynamics at the level of an individual patient, we need to predict the
burst size (total number of particles produced per cell lifetime) of HIV in singly and dually infected cells,
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and that of TIP in dually infected cells. Based on previous analysis [5], we assume that steady-state viral
production is reached shortly after the cell is infected and long before the death of the infected cell. Then,
the total numbers of virus particles per cell are given by

n = (kpck/�)GHIVC|P=0 (6)

 mn = (kpck/�)GHIVC, m � 1 (7)

⇢m mn = (kpck/�)GTIPC, m � 1 (8)

Here n is the HIV burst size from a cell infected with HIV only (the case obtained by setting P = 0),  m

shows decrease in HIV burst size due to co-infection with TIP, and ⇢m is the ratio of TIP to HIV burst size
in a co-infected cell. The parameter 1/� is the average lifetime of an HIV-infected cell.

Solving through (see also [9], SI), the three burst size outputs (n,  m, ⇢m) are given by:

n =
✓

�

y

1 + y

����
P=0

(9)

 mn =
✓

�

y

1 + y

, m � 1 (10)

⇢m = mP, m � 1 (11)

y ⌘ 1

2

⇣
� (mP + 1� ⌘ + ) +

p
(mP + 1� ⌘ + )2 + 4⌘

⌘
(12)

 ⌘ ↵�

✓kpck
(13)

Here y is the rescaled capsid number and  is the composite ”waste parameter” characterizing the loss of
HIV genomes and capsids before they form virions. If  is small, it is equal to the lost fraction of either
genomes or capsids, whichever product is limiting (i.e., loss of genomes for ⌘ > 1 and of capsids for ⌘ < 1).
In this limit, the expressions above become:

n =

(
✓
� , ⌘ > 1

⌘

✓
� , ⌘ < 1

(14)

n m =

(
✓
� , ⌘ > 1 +mP

✓
�

⌘
1+mP , ⌘ < 1 +mP

(15)

⇢m = mP (16)

The output quantities passed to the next, higher scale of modeling are the three burst sizes in Eqs 6-8.
Input parameters that a↵ect these burst sizes are mP , ⌘, and . (Parameter ✓/� , which determines the
absolute burst sizes, is absorbed in the host-scale reproduction ratio; TIP copy number m is a running index
at the host scale, see the next section.) Throughout the text, we take small  = 0.01, based on the analysis
in [9]. For the sensitivity of the results to  see Section E below. Thus, there are only two variable input
parameters on the scale of a single cell, P and ⌘.

B HIV and TIP in individual patients

Basic equations and biological interpretation

We begin with the standard model of HIV-host dynamics in vivo [8] generalized to include production of TIP
particles. The generalized model [9] includes co-infection of cells with TIP and HIV, so that dually infected
cells produce less HIV. As compared to the previous version in [9], we also include division of uninfected
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cells and cells infected with TIP only. Based on results of in vivo studies [1] (super-infection protection), we
allow only a single HIV provirus per cell but multiple copies of the TIP provirus.

The system of equations has the form:

dT0

dt

= b� (d(1� h) + kVH + kVT )T0 (17)

dTm

dt

= kVTTm�1 � (d(1� h) + kVH + kVT )Tm, m � 1 (18)

dIm

dt

= kV Tm � �Im, m � 0 (19)

dVH

dt

= n�I0 + n�

1X

m=1

 mIm � cVH (20)

dVT

dt

= n�

1X

m=1

⇢m mIm � cVT (21)

Here, the state variables are: T0, uninfected CD4 T cells permissive for viral replication; Tm,m � 1,
CD4 T cells harboring m copies of TIP provirus but not infected with HIV; I0, cells infected with HIV only;
Im,m > 1, dually infected cells harboring a copy of HIV and m copies of TIP provirus; VH , HIV load (free
virus concentration in peripheral blood plasma); VT , TIP load.

The model parameters, described in the literature (see [9] and refs therein) are: b, linear production
rate of uninfected cells; d, natural death rate of uninfected cells; h, average number of cell divisions in the
lifespan of an uninfected cell; k, infectivity factor; and �, death rate of singly and dually infected cells. There
are three additional parameters in the presence of TIP, derived at the single-cell level (Section A): n, HIV
burst size from a singly infected cell; n m, HIV burst size from a dually infected cell with m copies of TIP
provirus; and n m⇢m, TIP burst size from a dually infected cell with m copies of TIP provirus.

In general, as we describe below, the number of cell divisions (h) does not have to be constant, and
depends on state variables, such as the total number of cells, including uninfected and TIP-infected cells.
For the next three subsections, we model h as constant. We then introduce its dynamics as corrections to
the model.

The biological interpretation of Eqs 17-21 is as follows. Uninfected cells that are permissive for viral
replication (T0) are replenished from a constant source and by division. Permissive cells are depleted by
three competing processes: (i) their natural death, (ii) infection by HIV particles, (iii) infection by TIPs (Eq
17). Cells that become infected by HIV (I0) produce viral particles and die at average rate � ⇠ 1/ day (Eq
19, m = 0). Alternatively, before becoming infected with HIV, a cell can be infected with one or more copies
of TIP provirus and we classify these cells according to the copy number of TIP proviruses by cell bins Tm

(Eq 18). Cells infected with TIP alone do not express HIV proteins and die at the same rate as uninfected
cells. If a TIP cell is subsequently infected with HIV, the cell becomes dually infected (Im,m � 1) and
begins producing both HIV and TIP particles (Eqs 20, 21). These dually infected cells are HIV+TIP+ and
die as rapidly as infected cells which are HIV+TIP-, I0. HIV particles are generated from both singly and
dually HIV-infected cells (Eq 20), while TIP particles are generated from dually infected cells only (Eq 21).

Output: HIV and TIP loads in a host

Chronic HIV infection represents an approximate steady state [8]. In agreement with this fact, Eqs 17-
21 have a stable steady-state solution. Setting their right-hand sides equal to zero and solving gives the
steady-state:
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T̄0 =
b

d(1� h+ V̂H + V̂T )
(22)

Ī0 =
dV̂H T̄0

�

(23)

T̄m = T̄0q
m
, m � 1 (24)

Īm = Ī0q
m
, m � 1 (25)

1 + V̂H + V̂T � h = R

host
0

 
1 +

1X

m=1

 mq

m

!
or V̂H = 0 (26)

(1 + V̂H + V̂T � h)2 = V̂HR

host
0

1X

m=1

⇢m mq

m�1 or V̂T = 0 (27)

where, for tractability, the following new notation is used

R

host
0 ⌘ nkb

cd

(28)

V̂H ⌘ kV̄H

d

, V̂T ⌘ kV̄T

d

(29)

q ⌘ V̂T

1� h+ V̂H + V̂T

(30)

Here R

host
0 is the basic reproduction ratio at the beginning of infection, V̂H and V̂T are rescaled HIV and

TIP loads, and 1/(1 � q) is the average number of integrated TIP provirus copies hmi in a dually infected
cell. In the absence of TIP (V̂T = 0), the rescaled HIV virus load is V̂H = R

host
0 � 1.

The quantities that carry forward to the population scale (Section C) are the rescaled HIV and TIP
loads, V̂H and V̂T . Calculated from Eqs 26, 27, and 30, they depend on four parameters, Rhost

0 , P, ⌘, and .
S1 Fig shows TIP and HIV loads rescaled to the TIP-free HIV load, as functions of (P, ⌘) for Rhost

0 = 10 [7]
and  << 1.

Basic equations in dimensionless units

For the next sections, for ease of calculation and comparison between various values of ⌘, we make the state
variables unitless and introduce some new notation.
Making the substitutions:

t ! t

�

(31)

VH ! d

k

VH (32)

VT ! d

k

VT (33)

Tm ! c�

k✓

Tm m = 0, 1, . . . (34)

Im ! c�

k✓

Im m = 0, 1, . . . (35)

makes all of the state variables unitless.
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Next, we redefine the host level variables in order to remove dependence of the host-level parameter, R0,
on the cell-level parameter, ⌘. The new notation is:

�m =
�

✓

n m =
y

1 + y

����
m

(36)

R00 =
✓

n�

R

host
0 = R

host
0 /min [1, ⌘] =

✓kb

cd�
(37)

This removes the ⌘ dependence from R0. Only the burst size terms, which have the form ✓
��m, depend on

⌘. This makes comparison between various values of ⌘ easier, but does change the intuitive meaning of R0

to a normalized value of the influx of T cells, rather than the (more meaningful) reproduction ratio for HIV
infection of cells.
The new dimensionless system is:

dT0

dt

=
d

�

(R00 � (1� h+ VH + VT )T0) (38)

dTm

dt

=
d

�

(VTTm�1 � (1� h+ VH + VT )Tm), m � 1 (39)

dIm

dt

=
d

�

TmVH � Im, m � 0 (40)

dVH

dt

=
c

�

⇣
�

d

1X

m=0

�mIm � VH

⌘
(41)

dVT

dt

=
c

�

⇣
�

d

1X

m=1

⇢m�mIm � VT

⌘
(42)

and has four parameters: two expressing the separation between various timescales ( c� and d
� ), and two

expressing the strengths of the inputs of T-cells from various sources (R00 and h).

Dynamic stability of TIP

If the TIPs are to invade a population of HIV infected cells, then when a small number of TIPs are introduced
into a TIP-free steady state, that number should grow, turning the steady state into an unstable equilibrium
point. If we set VT = Im = Tm = 0 for m > 0 (TIP free), the steady state equations become (with limits as
 becomes small on the right)

T0 =
1

�0
=

(
1, ⌘ > 1

1/⌘, ⌘ < 1
(43)

VH = R00�0 � 1 + h =

(
R00 � 1 + h, ⌘ > 1

⌘R00 � 1 + h, ⌘ < 1
(44)

I0 =
d

�

1

�0
(R00�0 � 1 + h) =

(
d
� (R00 � 1 + h) , ⌘ > 1
d
�

⇣
R00 +

h�1
⌘

⌘
, ⌘ < 1

(45)

Standard eigenvalue analysis shows this state to be unstable (i.e. the introduced TIP will expand) if and
only if

⇢1�1 >

1� h+ VH

VHT0
(46)
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Equivalently, for small :

⌘ < 1 : P >

R
00

⌘
h�1 and h > 1 (47)

1 < ⌘ < 1 + P : P >

R
00

⌘(R
00

+h�1)�R
00

and ⌘ >

R00

R00 + h� 1
(48)

⌘ > 1 + P : P >

R
00

R
00

+h�1 (49)

This result means that we will have growth for all ⌘ if:

h > 1 +
R00

P

(50)

If cell division were absent (h = 0), these TIP stability conditions would only be satisfiable at ⌘ > 1 [9]. In
animals chronically infected with SIV, a large range of variation in replenishment rates is observed from cell
division as opposed to a linear source [6], as we model here. The average values for high and low infectivity
classes were that one fourth to one half of cell death (including viral e↵ects and the natural lifespan) is
compensated by the division of preexisting cells. This corresponds to h = 0.33R00 to h = R00. Due to the
division of uninfected cells and cells with integrated TIP provirus, as long as TIP transcriptional advantage
is moderately high (P > 3), TIP is predicted to be stable in an individual host at almost any value of ⌘ (Fig
1B). First, however, we need to address the dependence of division on the number of T cells.

Homeostatic regulation of division

We showed in the previous section that introduction of T-cell division into the model is not only realistic,
but also helps to reduce the sensitivity of the model to the parameter ⌘. On the other hand, examination of
Eq. 38 reveals that h � 1, if held constant, will cause T0 to diverge when in an uninfected host. Depending
upon how large the value is, this non-biological behavior can force the whole model into producing strange
results even when HIV is present (for example, divergence in the average number of TIPs infecting a cell).
Clearly, h cannot be assumed to be constant as the numbers of cells vary. Here, we assume that cell division
shuts o↵ homeostatically and so h decreases to zero as the number of division-competent cells (i.e. cells not
infected by HIV) increases. We assume a specific form of the homeostatic shut-down function, but show that
the results are relatively insensitive to this form:

h = h0f [
T

R00
] (51)

where

f [x] = 1� 1

1 + e

�(x�1)/a
, a = .1 (52)

T =
X

m

Tm

h0 = 3.33 = 0.33R00

and x = 1 corresponds approximately to the pre-infection level of T . Because we estimated h in equilibrium
to be somewhere in the range 3-10, and h < h0, this choice of h0 is a conservative estimate of the maximal
division rate.

E↵ect of the homeostatic shutdown of division on TIP-free steady state

Above, we calculated the steady state in terms of h assuming a constant value. The next question is what
e↵ect adjusting the value of h dynamically has on steady state levels.

For the TIP-free steady-state, the answer is simple. Because the steady state value of T0 is independent
of the value of h, it will not change upon introduction of any shutdown function. Hence, we may set

h = h0f [
1

�0R00
]
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in the derived equations (43 - 45) to give correct expressions.
Now that we have a dynamic h, the second condition in Eqn. 47 begins to take on meaning, especially

if we assume (as is reasonable for a homeostatic shutdown function) that f is non-increasing.
Requiring

h0f [
1

�0R00
] > 1

shows that, although TIPs eventually become unstable regardless of the value of h0, higher h0 values lead
to an expanded stability region for TIP. On the other hand, if ⌘ becomes lower than a zero of R00�0+h� 1,
then HIV will become unstable. As a result, as we increase the value of h0, the region of both HIV stability
and TIP instability becomes smaller. For example, for the shutdown function in eqn. 52 and h0 = 3.33, the
region is: ⌘ 2 [.079, .092], as compared to ⌘ 2 [.1, 1] for h0 = 0.

E↵ect of the homeostatic shutdown of division on TIP+ steady state

The steady-state values with TIP are harder to solve for. We must truncate the infinite sequence of Tm

and Im values at some m. This will result in m possible stead-state solutions, but very few of them will
correspond to biologically relevant scenarios. For example, in equation 30, nonzero values of h open the door
for negative values of q, which are non-biological because they correspond to negative Ti when i is even. The
large number of branches and small number of relevant ones means that generic solvers will often choose the
wrong branch, and so produce non-biological results. To deal with such complications, we used a custom
numerical scheme:
We start from

T0 =
R00

1� h+ VH + VT

I0 =
d

�

VHT0

Tm = T0q
m
, m � 1

Im = I0q
m
, m � 1

1� h+ VH + VT = R00

1X

m=0

�mq

m or VH = 0

(1� h+ VH + VT )
2 = VHR00

1X

m=1

⇢m�mq

m�1 or VT = 0

q =
VT

1� h+ VH + VT

First, we solve for q. Making the biological assumptions that the VH , VT , and
P

m Tm are finite means that
q 2 [0, 1), which allows us to truncate the sums at a su�ciently large index, producing polynomials in q.
Using the notation:

P1[q] = R00

m
maxX

m=0

�mq

m (53)

P2[q] = R00

m
maxX

m=1

⇢m�mq

m�1 (54)

↵ = 1� h+ VH + VT (55)
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produces the equations (noting that for q 2 [0, 1), P2 > 0):

↵ = P1[q] (56)

↵

2 = VHP2[q] ) VH =
P1[q]2

P2[q]
(57)

So,
0 = P2[q]((1� q)P1[q]� 1 + h)� P1[q]

2 (58)

This polynomial is then solved numerically, and the solutions can be filtered to put constraints on q (namely,
q is real and q 2 [0, 1) ). Because each value of q corresponds to a branch of the system, this e↵ectively
allows us to focus only on the relevant branches. Once q has been solved for, Eqs. 55, 56 and 57 allow us to
solve for VH and VT , and from there, for all Ti and Ii values.

In order to introduce the homeostatic shutdown function, we back-calculate from a value of h at steady-state
to determine the system that it corresponds to. We:

1. Assume a steady-state value of h = heq and use this to solve the polynomial, producing the value of q
at steady-state.

2. Given q, we calculate the steady-state T-cell count:

T =
X

m

Tm =
R00

P1[q](1� q)

3. Finally, using our specific shutdown function, we back-calculate h0 as:

h0 =
heq

f [T/R00]

The plot of q, T , and h0 against the equilibrium division rate heq is shown in S7 Fig. These plots help to
highlight why there is only a weak dependence of the results on the rollo↵ function: because its only influence
is to slightly adjust the h0 vs heq dependence around the T solution.

This method gives results that we can be confident in, but makes surveying large areas of parameter space
for given h0 somewhat cumbersome. We used a variable step size method to find bounds on the required
values of heq, after which desired accuracy was obtained with a bisection method.

C TIP and HIV in a population

Basic equations and epidemiological interpretation

We consider a uniform unstructured population with virus transmission between patients during the chronic
phase of HIV infection. According to a standard SIR approach, it is represented by the system of equations

dS

dt

= �� c

N

�

I
H S I � c

N

�

ID
H S ID � �S S (59)

dI

dt

=
c

N

�

I
H S I +

c

N

�

ID
H S ID � c

N

�

ID
T I ID � �I I (60)

dID

dt

=
c

N

�

ID
T I ID � �D ID (61)

The epidemiological processes included are as follows: Susceptible individuals, whose number is denoted
S, enter the high-risk group at linear rate � and leave it with exponential rate �S . They can be infected
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with HIV and become singly infected. The singly infected individuals, I, can be superinfected with TIP and
become dually infected individuals, ID. Both singly infected and dually infected individuals can transmit
HIV further, although at di↵erent rates (see below). Only dually infected individuals can transmit TIP. The
model in Eqs 59-61 represents a simplified version of the one studied in [5].

The model parameters are the frequency of contacts per unit time c, the death rates �S , �I , �D of the three
groups of individuals, and the three transmission (dimensionless) coe�cients �I

H ,�

ID
H ,�

ID
T . In what follows,

we take the frequency of contacts, c, to be linearly increasing with the total population, N . This corresponds
to an assumption of density dependent interactions within the population. Given this assumption, the
quantity c/N is a constant.

Link to the individual-host and single-cell scales

These parameters can be expressed in terms of HIV and TIP virus loads based on epidemiological data [2,5]:

�

I
H = F [VH [⌘, P = 0]] (62)

�

ID
H = F [VH [⌘, P ]] (63)

�

ID
T = F [VT [⌘, P ]] (64)

F [V ] ⌘ 0.54V

4.14 + V

(65)

�I = D[VH [⌘, P = 0]] (66)

�D = D[VH [⌘, P ]] (67)

�S =
1

35
(68)

D[V ] =

✓
25.4⇥ (0.35)0.41

(0.35)0.41 + V

0.41

◆�1

(69)

where VH [⌘, P ] and VT [⌘, P ] are the HIV and TIP loads, respectively, in units of 105 RNA copies/ml blood.
In Eq 62, the case P = 0 corresponds to the absence of TIP. Virus loads are expressed in terms of single-cell
parameters ⌘ and P (Section B; S1 Fig). The average HIV viral load in the absence of TIP is V̄H(P = 0) = 105

RNA copies/ml, for which we get �ID
H = �1 = 0.105.

Steady-state prevalence of singly and dually infected individuals

In the absence of HIV infection, from Eq 59, the number of uninfected individuals remains at the steady-state
level

S

0 =
�

�S
, (70)

I = ID = 0 (71)

In what follows, it will be convenient to rescale the 3 state variables to units of S0:

Ŝ =
S

S

0
, Î =

I

S

0
, ÎD =

ID

S

0
(72)

In the presence of HIV infection, but before introduction of TIP, the rescaled steady-state subpopulations
are

Î =
1

B

(1� 1/Rpop
0 ) (73)

Ŝ = 1/Rpop
0 (74)

ÎD = 0 (75)
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where

R

pop
0 ⌘ �c�1

N�I�S
(76)

B ⌘ �I

�S
(77)

The prevalence of infection x = I/(I + S +D) is related to the reproduction ratio:

R

pop
0 = 1 +

�Ix

�S(1� x)
(78)

Considering the presence of both HIV and TIP, we obtain

Ŝ

ss =
1

B⌧/�+ µR

pop
0 BÎD + 1

(79)

Î

ss =
⌧

R

pop
0 �

(80)

(ÎssD )2 + Î

ss
D

1

R

pop
0 B

 
B⌧

�µ

+
B

�

+
1

µ

� R

pop
0

⌧

!
+

1

(Rpop
0 )2�2µB

⇣
B⌧ � �(Rpop

0 � 1)
⌘
= 0 (81)

where we use R

pop
0 and B as in Eqs 76 and 77 and define the three new parameters:

µ =
�

ID
H

�1
, µ < 1 (82)

� =
�

ID
T

�1
, � > 1 (83)

⌧ =
�D

�I
, ⌧ < 1 (84)

Note that the parameters µ and � represent the relative transmission rates of HIV and TIP in dually infected
individuals in units of the base HIV transmission rate, and that 1/⌧ represents the increase that TIP confers
to the lifespan of an HIV-infected individual.

To link this back to the single-cell parameters ⌘,, P , we express µ,�, ⌧ in terms of HIV and TIP loads
from Eqs 62-69, and then substitute the virus loads calculated in Section B as functions of ⌘, P,. HIV
prevalence in a steady state population as a function of ⌘, P at fixed  = 0.01 is shown in Fig 2A.

Dynamic equations in dimensionless form

In the new notation, the dynamic equations, Eqs 59-61, take the form

1

�I

dŜ

dt

= (1/B)(1� Ŝ)�R

pop
0 (Ŝ Î + µ Ŝ ÎD) (85)

1

�I

dÎ

dt

= R

pop
0 (Ŝ Î + µ Ŝ ÎD � � Î ÎD)� Î (86)

1

�I

dÎD

dt

= R

pop
0 � Î ÎD � ⌧ ID (87)

which, in addition to the parameters a↵ecting the steady state, depend on time scale 1/�I .
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Condition for TIP spread and stability in a population

To find general conditions for the spread of TIP, we start from reexamining the steady state. The biologically
relevant solution to the quadratic equation in Eq. (81) has the form

Î

ss
D =

1

2

⇣
�X +

p
X

2 + 4Y
⌘

(88)

X =
1

R

pop
0 B

✓
B⌧

�µ

+
B

�

+
1

µ

� R

pop
0

⌧

◆

Y =
1

(Rpop
0 )2�2µB

�
�(Rpop

0 � 1)�B⌧

�

Regardless of sign of X, the dually infected fraction is positive, ÎD > 0, if Y > 0, which holds at

� >

B⌧

R

pop
0 � 1

(89)

This inequality, which represents a necessary condition for the stablity of TIP, can be rewritten as

R

pop
0 � B⌧

�

> 1 (90)

Next, suppose we begin in a TIP-free steady state, Eqs 73-75, and introduce a small number of dually
infected individuals ID. To test whether TIP will spread in a population further, we consider s, i, iD ⌧ 1
as small perturbations away from the TIP-free steady state:

Ŝ[t] = Ŝ

ss(1 + s[t]) (91)

Î[t] = Î

ss(1 + i[t]) (92)

ÎD[t] = iD[t] (93)

This leads to the equation
diD

dt

= �S

�
�(Rpop

0 � 1)�B⌧

�
iD (94)

In order to have TIP expand in a population, we need the right-hand side to be positive and again arrive at
the inequality in Eq 89.

Thus, TIP spreads and is stable under the same threshold condition, Eq 89, where the left-hand side
represents the ”e↵ective reproduction ratio” of TIP. Moreover, the same condition is also clearly connected
to the ratio of HIV-infected population sizes before and after TIP:

I[� = 0]

I[�]
=

B⌧

�(Rpop
0 � 1)

< 1 (95)

where � = 0 corresponds to the absence of TIP, Eq 73. If we denote the percent of individuals infected with
HIV in a TIP-free system as

x ⌘ Î

ss

Ŝ

ss + Î

ss
=

R

pop
0 � 1

B +R

pop
0 � 1

. (96)

then the TIP stability/spread threshold, Eq 89, can be rewritten as

�

⌧

>

1� x

x

(97)

We see clearly that the threshold in � is dependent only on the initial HIV prevalence, x, and the lifespan
increase, ⌧ , but does not depend (explicitly) on R

pop
0 , B or on the relative HIV transmission rate µ. We link

� and ⌧ to the single-cell parameters as explained above (after Eq 84). At fixed , Rpop
0 and x, TIP stability

can be shown as a region in the plane (⌘, P ) (Fig 1B, C in the main text). As we observe, at high prevalence,
x > 0.5, the population-level threshold is quite close to the host-level threshold.

12



D Stability of TIP treatment under HIV Evolution

Direction of evolution and the fitness

The fitness of a virus strain is determined by the average progeny number, i.e. the average number of new
infections resulting from an individual infected cell. At steady state, the average progeny number is equal
to one. If a mutation occurs, the mutant strain will have a smaller or larger average progeny number; the
relative di↵erence is referred to as the selection coe�cient se↵ . Depending on the sign of se↵ , the mutant
will expand or contract as exp[se↵�t] and either make a foothold in the population, or go extinct. Here,
1/� is the time interval of one generation, equal to the average lifetime of an infected cell. We assume a
deterministically large population, and a single mutation with small fitness e↵ect, as given by |se↵ | ⌧ 1.
When the quantity of the mutant introduced is small, its introduction corresponds to a linear perturbation
of the model, and so, se↵ corresponds to the leading eigenvalue of the Jacobian of the system [3].

For the special case in which the rate of mutant expansion or contraction is dependent only upon the
di↵erence between parameters describing the mutants (no frequency dependent e↵ects, etc.), the system is
conservative, so the fitness can be expressed as a potential function, a fitness landscape. In this case, e↵ective
selection coe�cient represents the log-slope of the fitness landscape in the direction of the mutation event.
In this system, a fitness landscape is su�cient to capture the behavior at the host scale, but insu�cient to
describe the population scale behavior. See also the main text discussion.

Note that even a beneficial mutation emerging within a genetically diverse population is likely to become
extinct due to the combination of random drift and linkage e↵ects. Indeed, a mutation must occur within a
high-fitness strain to become amplified and fixed in a population. Mathematical theories have been developed
to describe the fixation probabilites and the speed of evolutions [Refs 6-14 from [10]]. In the present work,
we do not consider these complexities: our interest is in the general direction of evolution rather than its
exact speed, and in the sign of se↵ as the pointer.

Direction of evolution in a host

We start from a steady-state population, with state variables given by Eqs 22-27 in Section B. Following [3],
the cells, the wild-type virus, and the TIPs are in a steady dynamic equilibrium prior to introduction of the
mutant, so any changes here will decay. Further, changes in these variables only enter the mutant equations
as higher-order terms, so they do not e↵ect linear perturbations of the system. Hence, the eigenvalues of
the system will just be the eigenvalues of the mutant and wild-type portions of the system individually, and
only eigenvalues from the mutant system have the potential to be positive (as in [3]). These correspond to
the eigenvalues of: 2

666664

d
�T

ss
0 �1 0 · · · 0

d
�T

ss
1 0 �1 · · · 0
...

...
...

. . .
...

d
�T

ss
m 0 0 · · · �1

� c
�

c
d�

mut
0

c
d�

mut
1 · · · c

d�
mut
m

3

777775
(98)

Where the top m+ 1 rows correspond to I

mut
0 through I

mut
m , and the bottom row corresponds V mut

H .

In this case, the direction of evolution within hosts can be encapsulated by a fitness landscape [9]. We
examine a small change in ⌘, with corresponding small fold di↵erences in n and  m (calculated from the cell
scale model)

n ! n(1 +�n),  m !  m(1 +� m) i.e. (99)

�n ⌘ @n/n, � m ⌘ @ m/ m
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Neglecting the second-order terms in �, the mutant subpopulations expand in time as exp[se↵�t], where se↵
is given by

se↵ = �n +

P1
m=1  mq

m� m

1 +
P1

m=1 q
m
 m

(100)

where n and  m are given by Eqs 9, 10, and 12 (Section A).
Intuitively, Eq. 100 is a weighted average of fitness di↵erences due burst sizes di↵erences between the

two mutants. The �n term corresponds to the flat fitness changes due to TIP-independent changes in burst
size; this applies uniformly to all infected cells. The � m term is a weighted average over all cells of TIP-
associated changes to the burst size. This applies di↵erently to cells with di↵erent numbers of TIP, so � m

changes with m.
se↵ can also be written as the relative change in the burst size of an HIV-infected cell averaged over the

TIP provirus number, m:

se↵ = @nav/nav|q=const (101)

nav = n

1 +
P1

m=1  mq

m

1 +
P1

m=1 q
m

(102)

The fitness landscape in ⌘ is shown in Fig 2B and S3B Fig. We observe that in both TIP-treated (with
P = 0) and untreated patients, fitness increases towards larger ⌘. The direction of selection pressure is
towards making more capsids to compensate for their loss (and, in the dually infected individuals, also for
their stealing by TIP). Thus, TIP-resistance mutations are selected against in a host.

Direction of evolution in a population

Plugging our model into above equations, we see that, within a single host, HIV mutants with larger value
of ⌘ are uniformly selected for (Fig 2). In contrast, selection at the population level is a balance between
several factors. To analyze when each of these factors is dominant, we introduce a second set of population
compartments, representing infection by a di↵erent HIV strain:

1

�I

dS

dt

=
1

B

(1� S)�R

pop
0 1 (SI1 + µ1SID1)�R

pop
0 2 (SI2 + µ2SID2) (103)

1

�I

dI1

dt

= R

pop
0 1 (SI1 + µ1SID1 � �1I1ID1 + co(I2I1 + µ1I2ID1))�R

pop
0 2 (�2I1ID2)�

�I1

�I
I1 (104)

1

�I

dI2

dt

= R

pop
0 2 (SI2 + µ2SID2 � �2I2ID2)�R

pop
0 1 (�1I2ID1 + co(I2I1 + µ1I2ID1))�

�I2

�I
I2 (105)

1

�I

dID1

dt

= R

pop
0 1 [�1I1ID1 + co(ID2I1 + µ1ID2ID1)] +R

pop
0 2 (�2I1ID2)� ⌧1ID1 (106)

1

�I

dID2

dt

= R

pop
0 2 (�2I2ID2) +R

pop
0 1 [�1I2ID1 � co(ID2I1 + µ1ID2ID1)]� ⌧2ID2 (107)

Here co gives the ratio between the probability of co-infection and the probability of naive infection. �I1 and
�I2 are calculated as before (eqn 66). The units of time, �I = 0.1, is taken to be a standard value across all
of the equations. This standard value is used in calculating the remainder of the parameters (R0, ⌧ , etc),

which are defined as previously. For example, ⌧1 = �2D
�I

where �2D is calculated by plugging steady-state viral
loads for strain 1 into Eqs. 67, and �I = 0.1. State variables also remain the same, with the addition of
di↵erent variables for each HIV strain. Strain 1 is assumed to be better-fit within a host than strain 2. When
a host infected with strain 2 is superinfected with strain 1, strain 1 rapidly outcompetes strain 2. Examples
of the dynamics that follow after introduction of a small mutant population are shown in Fig 3B, and S4
and S5 Figs, where co = 0 in the no co-infection case and co = 1 in the co-infection case (see Fig 3B and the
discussion below).
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Again we wish to ascertain the general direction of flow of ⌘ under evolution, so we use a similar analysis
to the host level above: determine whether a mutant population will grow or shrink based upon the sign
of the eigenvalues of the system when small amounts of mutant are introduced into the wild-type steady
state. Denote the prevalences of uninfected, HIV infected, and HIV and TIP infected individuals at the
wild-type steady state by S

ss, Iss, and I

ss
D respectively. We take the linear components of changes resulting

from perturbations in the mutant variables (the Jacobian). The wild-type is in a stable steady state prior to
introduction of mutant, so any changes here will decay. Furthermore, changes in wild-type variables (and S)
will only enter the mutant equations as higher-order terms. Hence, the eigenvalues of the system will just be
the eigenvalues of the mutant and wild-type portions of the system individually, and only eigenvalues from
the mutant system have the potential to be positive (as in [3]). For partially resistant, the mutant matrix is:

�I


R

pop
0 2 (Sss)�R

pop
0 1 (co(Iss + µ1I

ss
D ) + �1I

ss
D )� �I2

�I
R

pop
0 2 µ2S

ss

R

pop
0 1 �1I

ss
D �R

pop
0 1 co(Iss + µ1I

ss
D )� ⌧2

�
(108)

For fully resistant mutants, there is no ID2, and the mutant matrix is (a scalar):

�I [R
pop
0 2 S

ss �R

pop
0 1 co(I

ss + µ1I
ss
D )� �I2

�I
] (109)

Fig 3C in the main text was calculated from maximal eigenvalues of the two matrices above (108, 109) and
their analogs for mutation from I2 to I1.

In principle, a fitness landscape for the population can be calculated in analogy to the host-level process
above (from [9]) if we are willing to neglect both frequency dependent e↵ects and constant terms in the selec-
tion strengths (which result from co-infection, because it occurs independent of the magnitude of di↵erences
in ⌘). Expanding in terms of the changes in parameter values resulting from a small change �⌘ (these can
be calculated from the lower levels of model) gives:

se↵ = �I
��⌧ (R0S

ss �R0�1I
ss
D � 1)��R(⌧1Sss +R0�1µ1I

ss
D S

ss)��µ(R2
0�1I

ss
D )Sss

R0S
ss �R0�1I

ss
D � 1� ⌧1

Which could then be integrated along each fixed value of P . However, as we discussed in the main text, the
major interesting evolutionary behavior of the model results from deviations from landscape behavior.

Evolution from ⌘ < ⌘c towards ⌘c

In the main text, we saw that in the parameter regime ⌘ < ⌘c, the host level became evolutionarily unstable.
That is to say, if the wild-type HIV is assumed to have a value of ⌘ in the range ⌘ < ⌘c (where ⌘c was a critical
value of ⌘ (dependent on P ) at which the HIV load was maximized) then evolution would favor enhanced
viral loads in individual hosts. However, we argued that this was a result of enhanced HIV e�ciency rather
than reduced suppression from TIP, and that selection pressures in this direction were imposed regardless
of the presence of TIP. An example of this behavior is shown in S5 Fig. Note that in this case, regardless of
the values of the parameters (P or scale-separation), the mutant always takes over the population. In fact,
the presence of coinfection simply serves to enhance the spread of the mutant. The selection pressures at the
host level and the population level are always aligned. [It is also noteworthy that, as mentioned in the main
text, although the mutant maintains enhanced loads in hosts, the prevalence of individuals not exposed to
TIP therapy is decreased].

This behavior is a quirk of the single-cell system used to describe capsid stealing. It is built into the model
by the fact that, TIP or no TIP, HIV is always able to produce genomes at the same rate, and capsids are
produced at no cost to genome production. That is to say, it is an artifact of the assumption that there is no
trade-o↵ in terms of genome production for the production of capsids. In this case, it is evidently better to
always be producing more capsids if there is no competitor. It is this same e↵ect that results in the trade-o↵s
for reduced capsid production that we observed, and that the model was trying to capture. However, as
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an artifact, when the capsid to genome production ratio gets too low, pressures towards enhancing capsid
production swamp all others. A model that avoided this sort of artifact would be selectively neutral for
wild-type populations of HIV prior to the introduction of TIP, and would only output selection e↵ects that
result from the change in the system. This is a limitation of the model; having a wild type which has been
held at ⌘ = .5 requires either additional external selective forces or a molecular limit to evolution.

E Robustness Tests

We performed several robustness tests on the model, as follows:

TIP pre-infects individuals

The above analysis assumes that TIP infects only individuals already infected with HIV (Section C). As we
mentioned in the previous subsection, TIP is expected to infect HIV-negative individuals equally well. In this
subsection, we investigate an alternative model, in which the preinfection is the mode of TIP transmission.
We consider the two modes separately for the sake of tractability.

Model equations for populations of susceptibles, S, TIP-only singly-infected individuals, ST , HIV-only
singly-infected individuals, I, and dually infected individuals ID are as follows

dS

dt

= �� c

N

�1 S I � c

N

�

ID
H S ID � c

N

�

ID
T S ID � �S S (110)

dST

dt

=
c

N

�

ID
T S ID � c

N

�1 ST I � c

N

�

ID
H ST ID � �S ST (111)

dI

dt

=
c

N

�1 S I +
c

N

�

ID
H S ID � �I I (112)

dID

dt

=
c

N

�1 ST I +
c

N

�

ID
H ST ID � �D ID (113)

which replace Eqs 59-61 of the TIP super-infection model. The new state variable is the number of TIP-
preinfected invidividuals, ST .

As in the TIP super-infection model, Eqs 110-113, have a steady state solution. In the absence of HIV,
or in the presence of HIV but in the absence of TIP, the steady states levels for S, I and ID are the same as
in the previous model [Eqs 70-71 and 73-75, respectively]. TIP-preinfected individuals are absent in either
case, ST = 0.

In the general case, TIP is present in a population. Using rescaling defined in Eq 72, we calculate the
steady state solutions for each variable:

Ŝ =
Î

R

pop
0 (Î + µÎD)

(114)

ŜT =
⌧ ÎD

R

pop
0 (Î + µÎD)

(115)

Î =
⌧

�� ⌧

✓
1

R
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0 B

+ µÎD

◆
(116)
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+ ÎD

✓
� 1
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1
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1
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⌧
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1

�

◆◆

+
1

(Rpop
0 )2B2

�µ

✓
�R

pop
0 +

�

�� ⌧

◆
= 0 (117)

where R

pop
0 , B, µ,� and ⌧ are defined in Eqs 76, 77, and 82-84. Eq 117 has a single positive solution if the
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last term in its left-hand side is negative. The resulting condition

� >

R

pop
0 ⌧

R

pop
0 � 1

(118)

is the new stability condition for TIP in a population.
Suppose we begin in a TIP free system, Eqs 73-75, ST = 0, and add in a small amount of TIP. We

consider s, sT , i, iD as small perturbations away from the TIP free steady state

Ŝ = Ŝ

SS(1 + s)

ŜT = sT

Î = Î

SS(1 + i)

ÎD = iD

This leads to the system

dsT

dt

= �s (�R

pop
0 sT + �B iD) (119)

dîD

dt

= �s ((R
pop
0 � 1) sT �B⌧ iD) (120)

To obtain the threshold of TIP spread, we have to determine when the determinant of the corresponding
2x2 matrix is negative. The spread threshold concides with the stability threshold in Eq 118.

We can also rewrite the stability threshold in terms of the HIV prevalence x in a TIP-free population,
Eq 96:

� > ⌧

✓
1� x

Bx

+ 1

◆
(121)

Unlike in the TIP superinfection model where the threshold depends only on ⌧ and x, Eq 97, now it depends
also on B. As previously, it does not depend on R

pop
0 or the relative HIV transmission rate µ. The main

di↵erence from the TIP superinfection model is that, with TIP preinfection, at moderately large values of
B, the TIP stablity threshold is not very sensitive to low values of HIV prevalence (Eq 121) (Fig 1C).

Sensitivity to 

Through-out the main text, we assumed a small, fixed value of the single-cellular waste parameter,  following
[9] who showed that regardless of the presence or absence of TIP, HIV would be pressured to evolve towards
small . We assumed  = 0.01, but some of the results derived were sensitive to the value of . In particular,
the shape and height of the host instability instability region was sensitive. Decreased  increases the height
of the peak to a limit around P = 3.5, and moved the critical value of ⌘ slightly towards 1 (S3A and S3C
Figs).

Timing of HIV Transmission

There is research [11] to suggest that much of transmission occurs during the acute phase of infection. This
means that TIP-suppression of HIV transmission would decrease because HIV is transmitting before super-
infection by the TIP. To test the robustness of the predictions to this model, we allowed HIV transmission
from TIP+ individuals to proceed as if unsuppressed. That is to say, we set µ = 1. This is a very aggressive
perturbation of the model, but does not change either the prevalence of HIV+TIP- hosts in the population
or the evolutionary behavior (S8 Fig). HIV+TIP+ hosts do increase in prevalence to compensate for the
increased transmission of HIV.

17



F Supplemental Discussion

We made several modeling decisions whose relaxation could yield further interesting considerations for TIP
evolution. These include:

Rate of Super-Infection

In principle, the rate of host stealing is dependent on several factors, including the probability of super-
infection as compared to nieve infection, the rate of take-over of a host as compared to the waiting time
between interactions with other members of the population, and chances of extinction events wiping out
small populations before they can establish a foothold.

Single Resource Stealing

Capsid stealing represents a very simple interference mechanism: stealing of a single resource in trans. This
could be generalized to higher number, or even n resource stealing models. Further, while [9] argued that
cis-stealing of genomes was not evolutionarily stable, stealing need not be limited to either one mechanism
or another. For example, the feedback between concentrations of gene products and rates of splicing could
result in indirect stealing of genomes through the use of gene products.

Uniformity of Wild-Type Population

The wild-type virus was assumed to be genetically uniform. This allowed for a direct comparison of fitnesses
of two HIV strains, but is quite unrealistic. Actually, HIV is quite diverse, and evolution at di↵erent sites is
not independent, as it has strong linkage e↵ects (genetic background e↵ects and clonal interference) which
attract great deal of study (see for a review [10]).

TIP toxicity

Here, we allowed arbitrarily large numbers of TIPs to co-infect individual cells prior to HIV infection. This
allowed the long-lived TIP population to have any size, however large. However, we could have imposed
restrictions on TIPs per cell, or feedback between the number of TIPs coinfecting and the death rates of
the cells. Either of these would impose more stringent control on the TIP population, and so would make
”capsid flooding” by increasing ⌘ a viable strategy for HIV to escape suppression, even while maintaining the
TIP population. (The new restriction would decouple the relationship between ⌘ and the TIP population
size.) This would not become evident for parameter range studied here until only very low numbers of TIPs
were allowed (all plots were made restricting the number to be less than 200). However, for tight restrictions
or very large ⌘, the strategy does become viable.
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